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I. INTRO[)UCTlO,\

Let C(/) denote the space of all real valued continuous functions on the
interval I = I-I. I I with the uniform norm .. Let II denote the set of all
algebraic polynomials and 1/ 11 n the set of all algebraic polynomials of
degree at most 11. It is known 161 that for IE C(f I there exists a unique
B,In E llll and a positive constant ;' such that

pi / BII (/) t;' P Bllcn ! I 11

for all p E nil' The polynomial Bllcn is called the best approximation of!
from nil and the largest constant ;' satisfying (1.1) is called the strong
unicity constant. This constant depends on both the function / and the
integer 11 and will be denoted by ;',In. In this paper it will be more
convenient to consider the reciprocal of :'11(/) and we will use the notation

.l1 11 (/) = 1;'11(/)1 I

The behavior of the sequence j M II (/) I,; 0 has been the subject of a number
of investigations 11.4. 5. 81 which are directed at the resolution of a question
that was first posed by Poreda 171: For what IE C(l) is the sequence
!MII(/n bounded?

Define the set

.1'/ = lIE C(/): 11m /1'1 11 (/) < eXJ:
II

and note that II c= .1'/, Henry and Roulier 151 have conjectured that the
reverse inclusion also holds. A survey of the previously mentioned results
supports their conjecture and shows that the behavior of jMII(/)i depends on
the cardinality of the extreme set off
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UNBOUNDED STRONG UNICITY CONSTANTS

We denote the extreme sets ofIE C(I) by

En(f) = {x E I: If(x) - Bn(f)(x)[ = III- Bn(f)ll}
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and the cardinality of En(f) by IEn(f)[. The classical Tschebyscheff
Equioscillation theorem [3] asserts that IEn(/)1 >n + 2. Schmidt [8] has
shown that if IEn(f)1 = n + 2 for infinitely many n then IE B. This raised
the question of whether or not there exists non-polynomial IE C(I) which
has the property that IEn(f)1 > n + 2 for all but finitely many values of n.
Bartelt and Schmidt 11] settle this existence question in the affirmative by
appealing to the Baire Category theorem and as such the method is not
constructive. In the present work a class of functions is constructed whose
extreme sets contain more than n + 2 points for all sufficiently large n. In
particular, the function S 2k considered in Section 2 has the property that, for
a given positive integer k,

Bartelt and Schmidt [II obtain a sufficient condition for a function to be
in the complement of ,'1J. Specifically, they establish the following theorem.

THEOREM 1. Let IE C(I)\n. If IEn(f)1 ~ n + 4 lor all sufficiently
large n, then IE ,w.
In Section 4, Theorem I is strengthened for the class of even functions and
the results of Section 4 are used to show the unboundedness of the sequence
jMn Ixl}~o' We note that Ixl EC1(I) and the results in [5,8], which require

I to be in C W (!), are not applicable to the absolute value function.

2. LARGE EXTREME SETS

In this section we exhibit a function IE C(I) whose extreme sets contain
at least 11 + k + 2 points where k is an arbitrary fixed positive integer. The
method is constructive and the resulting function can be seen to have
symmetry properties similar to the symmetry of an even function.

We define the error function for I as

rn(f) =1- Bn(f)· (2.1 )

A set of points x I <x 2 < '" <x N will be called an alternation set for the
function rn(f) if rn(f)(x;) -rn(f)(xi + I) ± Ilrn(f)11 for i = 1,..., N - 1.
The Tschebyscheff Equioscillation theorem [3] asserts that rn(f) has an
alternation set with cardinality at least 11 + 2, and conversely, if r = 1-P
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where pEnn has an alternating set with cardinality at least n + 2 then
p = Bn(f)·

The Tschebyscheff polynomial of degree k on I will be denoted by T k • For
k > 0, the range of Tk is I and thus for any g E C(/). II gl = go Tk II. The
construction of an f E C(I) with IEn(f)1 >n + k + 2 requires the following
lemmas.

LEMMA I. Let hE ql), f = h a Tk • and 1= nk + m. m = O. L.. .. k I.
where nand k are positive integers, then

and

(ii) rnk(f) = rt(f) exhibits (N - I) k + I alternations
if rn(h) exhibits N alternations.

Proof We denote by IXj f; I an alternation set for r,,(h) where we can
assume that the Xi have been ordered as follows:

-I ~ Xx < xx. I < ... < X I ~ I.

Denote by 1Yd7~o the k+ I points where Tk(Yi)=(-I/. Without loss of
generality we may assume that

·-1 = Yk <Yk I < ... <Yo = I.

The restriction of Tk to the interval IYi' Yi II (i = l,. ... k) is a bijection
onto I. We define Xu to be the unique element of IYi' Yi II with the property
that Tk(X i ) = x j (i = L. .. k: j = 1,.... N). Define the set X = 1xu: i = 1.. ... k:
j = I....• Nf. The ordering of X is most conveniently described as follows: fix
i. then Xu is strictly decreasing (increasing) if i is odd (even). Reference to
Fig. I will be beneficial in describing the rest of the ordering of X. Equality
may occur in the transition from one row to the next (the arrows of Fig. I )
only in the first and/or last columns.

XII> X I2 > > X 1\

X 21 < X 22 < < x 2,\,

'",X.11 >X.12 > ,,,>x.1,\

FIGURE I

For example. we must have x i,\, >x i + I.S where equality occurs if and only if
i is odd and -1 E E n(h). Analogously, Xii >Xi + 1.1 with equality occurring if
and only if i is even and I E En(h).
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We define r = f - Bn(h) 0 Tk and from the definition of f we have
r = (h - Bn(h)) 0 Tk = rn(h) 0 Tk • Since jXj }f~ I is an alternation set for rn(h)
and Tk(xij) Xj it follows that, for each i 1,... , k, the set jXil ,... , XiN } is an
alternation set for r. Moreover, we note that r(xu.I)=h(xl)-Bn(h)(Xl)=
r(xU + I • I ) for i=I,..., [(k+I)/2J and r(xU _I.N)=r(x2i.N) for
i = 2,... , [(k + 1)/2 J. It follows that the set

A = jXij: i = I,... , k;j= 2,... , N I}

U )XU_1,j:i= I,..., [k; I ];j= I,N! UY
where Y is the singleton iXkJ f if k is even and empty if k is odd, is an alter­
nation set for r. The cardinality of A is given by

[
k + I JIAI=(N-2)k+2 -2- +IYI=(N~I)k+ I.

The TschebyschefT Equioscillation theorem implies that N> n + 2. Since
nk = I - m and 0 ~ m ~ k I, we have

IA I= (N -- I) k + I >nk + k + I

m+k+ I

>1 + 2.

Thus r = f - Bn(h) 0 Tk exhibits at least 1+ 2 alternations and B,(/) =
Bn(h) 0 Tk is the best approximation to f from II,. This establishes (i).
Furthermore, r = rnk(/) = r,(/) and (ii) follows.

LEMMA 2. Let the Junctions f, h, and Tk and the integers n, k, I, and m
be as in Lemma I. Then £,(/) = T;; I (En(h)).

Proof By Lemma l,j- B,(/) = (h - Bn(h)) 0 Tk so that x E Elf) if
and only if Tk(x) E En(ll).

LEMMA 3. Let the functions f, h, and Tk and the integers n, k, I, and m
be as in Lemma I. If IEn(h)1 = N> n + 2 then the cardinality of E,(/) has
the following lower bounds:

(i) 1£,(/)1 =kN';?-1 + k + I

(ii) 1£,(/)1 = keN - I) + [ ~ J+ I

~/+[~]+2

640/4l!3·4



248 EGGERT AND LUND

r
k I j,?l+ T +2

(iv) IE/(f)!=k(N-I)+ 1,?1+2 if ± I E E,,(h).

Proof Using Lemma 2, we establish each of the above by counting the
number of points in Tkl(En(h»=E1(f). Since each of the statements are
similar we record here only one of the arguments and leave the remainder to
the reader. We establish (ii).

Using Fig. I as it applies to an extreme set and Lemma 2. IE /(/)1 =
IT,;-I(En(h))l=k(N-I)+ Ikl21 + 1. Thus the inequality N,?n + 2 and the
range of m implies k(N - I) '? kn + k = 1+ (k- m) '? / + I or !EM')! '?
/ + Ikl21 + 2. This establishes (ii).

We now exhibit a function 5 which has the property that -I E E,,(S) for
every positive integer n.

THEOREM 2. Define

xE (-1.11.
(2.2 )

so that 5 E C(l). Then -I E En(S) for every positit'e interger 11.

Proof
511 ~IIO

Since 11511 <1 we have IIBn (S)II-1 < I Bn(S)11
511 = 11511 < 1so that

ijS I~ Bn(S)

(2.3 )

Applying Markoffs inequality 121 to Bn(S) and using (2.3) we obtain

For all n,? I we define

(2.4 )

and a short computation gives

and X n =

S(x:) = n 2(x n + 1)

S(x" ) ~ -n 2(x n + I).

(2.5 )

(2.6 )
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We now show that IIBn(S) SII> IBn(S)(-I) - S(-I)1 for all positive
integers n. This is most conveniently done by considering three cases. To
simplify notation we set P = Bn(S) for the remainder of the proof.

Case (i). If P(-1) = 0, then IS(-1) - P(-1)1 = 0 by the definition of S
and -1 r£ E n(S),

Case (ii). If P(-1) > 0 then the mean value theorem implies that a
number e E (-I, x;) may be found such that

P(x;;) PC-I) = pI(e) > _n2.
x;; - (-1)

(2.7)

We have used (2.4) to obtain the inequality in (2.7). We now rewrite (2.7) in
the form

(2.8)

Using (2.8) and (2.6) we obtain

P(x,;) - Sex;) > PC-I) - {n 2(xn + 1) + Sex;;)}

~P(-I)=P(-I) S(-I) > O.

Hence. !IP - SII ~ IP(x;) - S(xn)1 > IP(-I) S(-I)I, and -1 r£ En(S).

Case (iii). Here we assume that P(-1) <O. This is similar to case (ii).
We obtain P(x:) - P(-I) <n2(x: + 1) from the mean value theorem and
then (2.5) gives

Sex;) - P(x:) > jS(x:) - n2(x: + I)} - P(-I)

=S(-l)-P(-I) > O.

Finally, IIP-SII > IS(-I)-P(-I)1 and -1 ~En(S),

In all three cases -1 r£ En(S),
It is the function S discussed in Theorem 2 that enables one to construct

functions f E C(I) whose extreme sets contain more than n + 2 points.

THEOREM 3. Let S be defined as in (2.2) and let k be a positive integer.
Define S k = S 0 Tk , then for all positive integers I

(2.9)

Proof There exist positive integers nand m < k such that I = nk + m.
Theorem 2 implies that -1 r£ E/(Sk)' Applying Lemma 3 to ElSk) gives the
inequality in (2.9).
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The existence of a continuous function f with more than n + 2 extreme
points in III depended on the existence of an even continuous function with
ot!'- £/(/) for all positive integers 1 and the proof of this was not
constructive. A constructive method for showing the existence of such
functions is provided by Theorem 3. If we use 1'2(x) = 2x 2 - I and 5 as
defined in (2.2) then Theorem 2 and Lemma 2 imply that 5 2 = 5 •. 1'2 is an
even function such that 0 t!'- £/(52 ) for all positive integers I. Moreover.
Theorem 3 gives IE/(5 2)1) 1+ 3.

3. STRONG UNICITY OF TSCHEBYSCHEFF COMPOSITION

Theorem I provides a necessary condition for a function fE C(I) to
belong to the set :1J; if fEB then iE,,(/)I > n + 4. The only functions, with
the latter property, known to the authors are the functions hoT, (h E C(l))

discussed in Section 2. The construction carried out in that section cannot
lead to a function in .JJ' unless h E B. This follows from Theorem 5, which
uses the following characterization of M,,(/) found in II I.

THEOREM 4. If h E C(l)\ll" then

M,,(h) = maxill pll:p E 11", a,Jh)(x)p(x) ~ Lx E E,,(h)i

THEOREM 5. Let hE C(l) and definef= he T,. lfft!'- lli" j I), I then

(3.1 )

Proof Sinceft!'- 11(,,+ I), I' h t!'- 11". Set / = nk-,- 111 for m = 0,1,. ... k I
and let x E £,,(h). It follows from Lemma 2 that E/(f) = 1', I(E,,(h)). Now
for yET; \') we have

a/(f)(y) = sgn r/(/)(y)

= sgn r",(/)(y)

= a",(f)(y)

= sgn r,,(h)(x)

= a,,(h)(x).

If pEll" then po1',Ell", and poT,()')=p(x). Then ll",,=­
11"hl c::; ···c::;ll(,,+llk-1 and Theorem 4 imply the inequalities in (3.1).
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4. Two EXAMPLES
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In this section we consider the set g' of continuous even functions defined
on I. It is clear that ifjEg' thenj=]o T2 where](x)=j(V(x+ 1)/2).
Hence, the results of Section 2 are applicable to the elements of g'.

LetjEg' and x=min{yEE/(f)ly~O}. If x*O then -xEE/(f) and
sgn(r(-x)) = sgn(r(x)). Thus both x and -x cannot be in an alternation set.
Notice that 0 E E/(f) if and only if -1 E En{]), n = [1/2J. Define e(/) = 1
(resp.O) if 0 E E/(f) (resp. 0 E E/(f)). Lemma 3 implies that IE,(f)1 =
21En{])1 - e(l). Thus when 0 E E/(f) it behaves as a "double" extreme
point.

Theorem 5 implies that if jE CP (J g')\II then]E 9. Thus the search for
a non-polynomial element of ,g; should not be restricted to the even
functions. Nevertheless, the following theorem shows that certain functions
do not belong to ,'lJ.

THEOREM 6. Let j E g'\n. Ij 'E ,(f)1 ~ 2( [//2 J + 4) - e(l), jor all
sufficiently large I, then jE B.

Proof Lemma 3 implies IE /(f)1 = 2 IEn{])1 - e(l) where n = [//2 J. Thus
IEn{])1 = ·HIElf)1 +e(l)) ~ n + 4. Theorem 1 implies jE B and Theorem 5
implies jE B.

COROLLARY I. IjpEII6 andj(x)=p(lxl)EII, thenjE9.

Proof Let I ~ 6 and set n = [//2 J. Since j is even we have B,(f)(x) =
B2n(f)(X)=L7~oaix2i. Let r+ be the restriction of the error function r/(f)
to [0,1], i.e., r+(x)=p(x)-B/(f)(x), xE [0, IJ. Since pEII6 and
Blj)(x) E II2n n g', we have Dx'+ E II2n~ l' Hence, Dxr + is the sum of at
most n + 3 monomials. By Descartes' rule of signs, Dxr + has at most n + 2
positive roots. The non-negative elements of E,(f) must be among the roots
of Dxr+' zero, or one. The symmetry of r now implies that
IE/(f)1 ~ 2n + 7 = 2[1/2J + 7. Theorem 6 implies thatjE ,P.

The corollary implies thatj(x) = Ixl is not an element of 9. The results in
[5.8] require Coo functions j and are therefore not applicable to the absolute
value function. Other examples that cannot be analyzed by considering the
derivatives of j can also be obtained from the methods of this paper. In
particular, we show that h(x) = (ax2+ bx + c) VX+1 does not belong to
,g;. Define (hoT2)(x)=j(x)=alxI5+PlxI3+Ylxl. The counting
argument of Corollary 1 implies that IE/(f)1 ~ 1+7, and Lemma 3 implies
that IEn(h)1 ~ n + 4, n = [1/2J. An application of Theorem 1 yields hE 9.
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